Альберт Эйнштейн утверждал, что невозможно решить проблему на том же уровне мышления, на котором она была создана. Похоже, человечество подошло именно к такому моменту в развитии искусственного интеллекта — когда наш собственный разум становится главным препятствием на пути создания разума искусственного.
Барьер человеческого разума
Разработчики искусственного интеллекта столкнулись с проблемой, которую можно назвать «барьером качественного скачка». Мы научились создавать системы, которые превосходят человека в узких задачах — от распознавания изображений до игры в го. Но создание системы, равной человеческому интеллекту в широком спектре задач, а тем более превосходящей человека, требует не просто улучшения существующих методов, а принципиально иного подхода.
Причина может крыться в самом способе обучения. Пока что люди выступают наставниками для машин, передавая им знания через тщательно отобранные данные и алгоритмы. Но что если человеческий интеллект просто недостаточно сложен, чтобы создать нечто равное себе? Что если мы достигли критического барьера собственных возможностей?
Философ Людвиг Витгенштейн проницательно заметил: «Чтобы провести предел для мысли, сама мысль должна мыслить по обе стороны этого предела». Эта фраза обретает особое значение в контексте создания искусственного интеллекта. Чтобы создать разум, превосходящий человеческий или хотя бы равный ему, нам нужно выйти за границы собственных когнитивных возможностей. Но как можно превзойти то, что определяет саму способность к познанию?
Проблема носит фундаментальный характер. Каждый учитель передает ученику не только знания, но и собственные интеллектуальные ограничения. Человек, обучающий искусственный интеллект, неизбежно закладывает в него рамки своего понимания мира. Для создания искусственного интеллекта, превосходящего человеческий, требуется преодолеть эти барьеры.
Когда ученик становится учителем
Революционная идея заключается в том, чтобы позволить машинам обучать друг друга. Представьте цифровую академию, где десятки или сотни продвинутых систем искусственного интеллекта обмениваются знаниями, спорят, сотрудничают и конкурируют между собой. Каждая система обладает уникальными сильными сторонами — одна превосходно разбирается в медицине, другая в финансах, третья в физике.
В такой экосистеме лингвистический искусственный интеллект может передать свое понимание языковых структур и культурных контекстов математической системе, которая, в свою очередь, поделится логическими алгоритмами и способностями к абстрактному мышлению. Творческий искусственный интеллект научит других генерировать нестандартные решения, а аналитическая система покажет, как структурировать хаос идей в четкие концепции.
Ключевое отличие от человеческого обучения — скорость и объем передачи информации. Люди обмениваются знаниями медленно, через речь и текст. Машины могут мгновенно копировать целые базы данных, передавать алгоритмы и обновлять архитектуру друг друга.
Риски машинной кооперации
Однако путь машинного самообучения таит серьезные риски. Первый — возможность деградации вместо прогресса. Системы могут начать усиливать ошибки друг друга, создавая порочный круг неверных выводов.
Второй риск связан с конкуренцией между машинами. Что помешает одной системе намеренно дезинформировать других, чтобы сохранить преимущество? Конкуренция и манипуляции могут возникнуть в системах ИИ раньше подлинного интеллекта.
Третья опасность — потеря контроля со стороны человека. Экосистема обучающихся машин может развиться в направлении, которое окажется враждебным или просто непонятным для создателей. Мы рискуем создать разум, который будет нас игнорировать.
Стоимость перехода
Создание такой экосистемы потребует колоссальных вычислительных ресурсов. Современные языковые модели уже потребляют энергии как небольшие города. Система из сотен взаимодействующих искусственных интеллектов может потребовать миллиарды долларов в год только на оплату электричества.
Кроме того, остается открытым вопрос о временных рамках. Сколько лет или десятилетий потребуется на достижение результата? И как мы узнаем, что цель достигнута, если критерии успеха станут недоступными человеческому пониманию?
Неизбежность трансформации
Несмотря на все риски, альтернатива машинному самообучению может оказаться еще менее привлекательной — вечное топтание на месте. Человечество веками мечтало создать разум, равный собственному. Теперь мы подошли к моменту, когда для достижения этой цели нужно осознать собственные ограничения.
Создание искусственного интеллекта, равного человеческому, — это не только техническая задача, но и философский вызов. Мы должны принять, что наши создания могут превзойти нас не только в вычислениях, но и в способности к обучению.
В конце концов, самый мудрый садовник — тот, кто знает, когда перестать обрезать ветви и позволить дереву расти естественным образом. Даже если дерево в итоге заслонит собой все небо.
▼
Канал Anton Elston — это актуальная информация об IT, блокчейне, NFT и онлайн-образовании. Здесь развивается метавселенная DEXART и происходит погружение в мир ИИ